

Wednesday 17 May 2017 - Morning

AS GCE MATHEMATICS

4721/01 Core Mathematics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

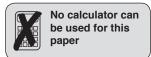
- Printed Answer Book 4721/01
- List of Formulae (MF1)

Other materials required: None Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Book. The question number(s) must be clearly shown.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the barcodes.
- You are **not** permitted to use a calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.


INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

2

Answer all the questions.

1 Express
$$\frac{2+\sqrt{7}}{\sqrt{7}-2}$$
 in the form $a+b\sqrt{7}$, where a and b are rational numbers. [3]

2 Solve the simultaneous equations

$$y = x^2 - 6x$$
, $2y + x - 6 = 0$. [5]

[5]

- 3 It is given that $f(x) = (3 + x^2)(\sqrt{x} 7x)$. Find f'(x).
- 4 Sketch the curve $y = -\frac{1}{2}(x+1)^2 + 2$, giving the coordinates of the turning point and indicating all points of intersection with the axes. [5]
- 5 Find the roots of the equation $4t^{\frac{2}{3}} = 15 17t^{\frac{1}{3}}$. [5]
- 6 (i) Express $3x^2 5x + 1$ in the form $a(x+b)^2 + c$. [4]
 - (ii) Work out the value of the discriminant of $3x^2 5x + 1$ and hence state the number of real roots of the equation $3x^2 5x + 1 = 0$. [2]
- 7 (i) Find the x values of the stationary points of the curve $y = 2x^4 x^2$. [3]
 - (ii) Determine, in each case, whether the stationary point is a maximum point or a minimum point. [2]
 - (iii) Hence state the set of values of x for which curve $2x^4 x^2$ is a decreasing function. [2]
- 8 (i) Sketch the curve $y = -2\sqrt{x}$. [2]
 - (ii) The curve $y = -2\sqrt{x}$ is translated by three units in the negative x direction. State the equation of the curve after it has been translated. [2]
 - (iii) Describe fully a single transformation that transforms the curve $y = -2\sqrt{x}$ to $y = -3\sqrt{5x}$. [2]
- 9 A curve has equation $y = 2x^2 + x 10$.
 - (i) Determine the set of values of x for which the graph of the curve lies above the x-axis. [4]
 - (ii) The line 3x + y = c is a tangent to the curve. Find the value of *c*. [5]

- 10 The circle $x^2 + y^2 8x + 2y = 0$ passes through the origin O. Line OA is a diameter to this circle.
 - (i) Find the equation of the line OA, giving your answer in the form ax + by = 0, where a and b are integers. [5]
 - (ii) The tangent to the circle at point A meets the x-axis at the point B. Find the area of triangle OAB. [6]
- 11 The normal to the curve $y = \frac{k}{x^2}$ at the point where x = -3 is parallel to the line $\frac{1}{2}y = 2 + 3x$.
 - (i) Determine the value of the constant k.
 - (ii) Find the equation of the normal where x = -3, giving your answer in the form ax + by + c = 0, where a, b and c are integers. [4]

[6]

END OF QUESTION PAPER

Qu	estion	Answer	Marks	Guidance	
1		$\frac{2+\sqrt{7}}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2}$	M1	Attempt to rationalise the denominator – must	Alternative:
		$\sqrt{7}-2$ $\sqrt{7}+2$		attempt to multiply. (May use $-\sqrt{7}-2$)	M1 Correct method to solve simultaneous equations formed from
		$\frac{11+4\sqrt{7}}{7-4}$	A1	Either numerator or denominator correct and simplified to no more than two terms	equating expression to $a + b\sqrt{7}$ A1 Either a or b correct
		$\frac{11}{3} + \frac{4\sqrt{7}}{3}$	A1	Fully correct and simplified.	A1 Both correct
		3 3	[3]	Allow $\frac{11+4\sqrt{7}}{3}$, terms in any order Do not ISW if then incorrect	Do not allow $\frac{-11-4\sqrt{7}}{-3}$ for last A1.
2		$2(x^2 - 6x) + x - 6 = 0$	M1*	Substitute for x/y to eliminate one of the variables	If x eliminated: $y = (6 - 2y)^2 - 6(6 - 2y)$
		$2x^2 - 11x - 6 = 0$	A1	Correct 2/3-term quadratic in solvable form	$4y^2 - 13y = 0$
		(2x+1)(x-6) = 0	M1* dep	Attempt to solve resulting quadratic. See appendix 1.	y(4y-13)=0
		$x = -\frac{1}{2}, x = 6$	A1	x values correct	Spotted solutions: If M0 DM0
		$y = \frac{13}{4}, y = 0$	A1	y values correct Award A1 A0 for one pair correctly found from correctly factorised quadratic	SC B1 One correct pair www SC B1 Second correct pair www Must show on both line and curve (Can then get 5/5 if both found www
			[5]		and exactly two solutions justified)
3		$\sqrt{x} = x^{\frac{1}{2}}$ seen or implied	B1		Alternative using product rule: B1 as main scheme
		$3x^{\frac{1}{2}} - 21x + x^{\frac{5}{2}} - 7x^{3}$	M1	Attempts to expand brackets with 3/4 terms soi	M1* Clear attempt at $uv' + vu'$
		$3x^2 - 21x + x^2 - 7x^3$	A1	Correct expression for $f(x)$ in index form	A1 All terms fully correct
		$\frac{3}{2}x^{-\frac{1}{2}} - 21 + \frac{5}{2}x^{\frac{3}{2}} - 21x^{2}$	M1	Attempt to differentiate their expression with at least one non-zero term correct	M1*dep Attempt to expand brackets with at least two terms simplified
			A1	Correct expression for $f'(x)$ cao ISW any attempts to put back into root form.	correctly A1 Correct expression for <i>f</i> [*] (<i>x</i>)
			[5]		

Question	Answer	Marks	Guidance	
4	Turning point = (-1, 2) -4 -3 -2 -1 0 1 -2 -4	B1 B1 ² A1 B1 5	Negative parabola Turning point at $(-1, 2)$; coordinates must be labelled on graph or clearly stated elsewhere Correct method to find roots* Correct <i>x</i> intercepts (1,0) and (-3, 0) Correct <i>y</i> intercept $(0, \frac{3}{2})$ NB – Do not award 5/5 if sketch inconsistent with stated values e.g. turning point shown in wrong quadrant etc. Withhold one B1.	For first mark must clearly be a parabola – must not stop at or before x axis, do not allow straight line sections drawn with a ruler or tending to extra turning points etc. Must not be a finite plot. * If not using given form to solve, M mark only available for attempt to solve $k\left(-\frac{1}{2}x^2 - x + \frac{3}{2}\right) = 0$. See appendix 1.
5	$k = t^{\frac{1}{3}}$ $4k^{2} + 17k - 15 = 0$ $(4k - 3)(k + 5) = 0$ $k = \frac{3}{4}, k = -5$ $t = \frac{27}{64}, t = -125$	M1* M1* dep A1 M1 A1 [5]	Substitute for $t^{\frac{1}{3}}$ to obtain a quadratic expression Rearrange and attempt to solve resulting quadratic equation. See appendix 1. Correct values of k Attempt to cube at least one value Final answers correct	Alternative: M2 Rearrange and factorise into two brackets containing $t^{\frac{1}{3}}$. See appendix 1. SC If straight to formula with no evidence of substitution at start and no cubing/cube rooting at end, then B1 for $\frac{-17\pm\sqrt{(17^2-4\times4\times-15)}}{2\times4}$ or better No marks if whole equation cubed etc. Spotted solutions: If M0 DM0 or M1 DM0 SC B1 $t = \frac{27}{64}$ www SC B1 $t = -125$ www (Can then get 5/5 if both found www and exactly two solutions justified)

4721/01

Q	uestion	Answer	Marks	Guidance	
6	(i)	$3(x^{2} - \frac{5}{3}x) + 1$ $3[(x - \frac{5}{6})^{2} - \frac{25}{36}] + 1$ $3(x - \frac{5}{6})^{2} - \frac{13}{12}$	M1	a = 3 $b = -\frac{5}{6} \left(\operatorname{not} \frac{-\frac{5}{2}}{2} - \frac{-2.5}{3} \right)$ $1 - 3b^2 \text{ or } 3 \times \left(\frac{1}{3} - b^2\right)$ $c = -\frac{13}{12} \text{ Allow } -\frac{39}{36} \text{ etc.}$	$3(x - \frac{5}{6})^{2} + \frac{13}{12} \text{ B1 B1 M0 A0}$ $3(x - \frac{5}{6}) - \frac{13}{12} \text{ 4/4 BOD}$ $3(x - \frac{5}{6}x)^{2} - \frac{13}{12} \text{ B1 B0 M1 A0}$ $3(x^{2} - \frac{5}{6})^{2} - \frac{13}{12} \text{ B1 B0 M1 A0}$ $3x(x - \frac{5}{6})^{2} - \frac{13}{12} \text{ B0 B1 M1 A0}$ $3(x^{2} - \frac{5}{6}) - \frac{13}{12} \text{ B1 B0 M1 A0}$ $3(x^{2} - \frac{5}{6}) - \frac{13}{12} \text{ B1 B0 M1 A0}$ $3(x + \frac{5}{6})^{2} - \frac{13}{12} \text{ B1 B0 M1 A0}$
	(ii)	$(-5)^2 - 4$. 3.1 = 13 So 2 real roots	B1 B1ft [2]	ft their discriminant e.g. " $-25 - 12 = -37$ so no roots" scores B0 B1ft	Use of $\sqrt{b^2 - 4ac}$ can score B0 B1
7	(i)	$\frac{dy}{dx} = 8x^3 - 2x$ At stationary points $8x^3 - 2x = 0$ $x = \frac{1}{2}, x = -\frac{1}{2}, x = 0$	B1 M1 A1 [3]	Correct differentiation Sets their derivative to zero Correctly obtains all three roots.	B0 M0 if expression is integrated and equated to zero. Do not accept $\pm \sqrt{\frac{1}{4}}$.
	(ii)	$\frac{d^2 y}{dx^2} = 24x^2 - 2$ When $x = \pm \frac{1}{2}$, $\frac{d^2 y}{dx^2} > 0$ so minimum, maximum when $x = 0$	M1 A1 [2]	Uses correct method to find nature of at least one stationary point e.g. substitution into second derivative (at least one term correct from their first derivative in (i)) and consider sign. Correct conclusions for all three points www	 Alternate valid methods include: 1) Determining sign of gradient at either side of stationary point 2) Evaluating <i>y</i> at, and either side of, stationary point 3) Correct sketch Working must be fully correct to obtain the A mark

Q	uestion	Answer	Marks	Guidance	
	(iii)	$x < -\frac{1}{2}, 0 < x < \frac{1}{2}$	B2 [2]	Both regions correct (allow B1 for one correct region)	Condone use of \leq instead of $<$. Condone e.g. $\sqrt{\frac{1}{4}}$ here.
8	(i)		B1 B1	 Correct shape in correct quadrant – must intend to go through (0, 0) Sketch must also : Start at (0,0) Have fully correct curvature – does not tend to a horizontal asymptote Not be a finite "plot" 	
8	(ii)	$y = -2\sqrt{x+3}$	M1 A1 [2]	Translates curve by $+/-3$ parallel to the <i>x</i> -axis Fully correct, must have " <i>y</i> ="	
	(iii)	Stretch Scale factor $\frac{3\sqrt{5}}{2}$ parallel to the <i>y</i> -axis (Scale factor $\frac{4}{45}$ oe parallel to the <i>x</i> -axis)	B1 B1 [2]	Must use stretch/stretched/stretching Allow "factor" or "SF" for "scale factor" For "parallel to the <i>y</i> axis" allow "vertically", "in the <i>y</i> direction". Do not accept "in/on/across/up the <i>y</i> axis", "SF 5 units" Apply the same principles to alternative correct answer:	Allow first B1 only for multiple transformations provided all are stretches . Allow $\frac{\sqrt{45}}{2}, \sqrt{\frac{45}{4}}$ etc. for $\frac{3\sqrt{5}}{2}$ B0B1 is possible e.g. "Enlarge by scale factor" etc. but not for (e.g.) "translate by scale factor" or similar.

Question	Answer	Marks	Guidance	
9 (i)	(2x+5)(x-2) = 0 - $\frac{5}{2}$, 2 $x < -\frac{5}{2}$, $x > 2$	M1 A1 M1 A1	Correct method to find roots. See appendix 1. Roots correct Chooses the "outside region" for their roots Allow " $x < -\frac{5}{2}$, $x > 2$ ", " $x < -\frac{5}{2}$ or $x > 2$ " but do not allow " $x < -\frac{5}{2}$ and $x > 2$ "	NB e.g. $-\frac{5}{2} > x > 2$ scores M1A0 if correct answer not previously seen. Must be strict inequalities for A mark
9 (ii) 9 (ii)	Gradient of line = -3 $\frac{dy}{dx} = 4x + 1$ $4x + 1 = -3$ $x = -1$ $y = -9$ $-9 = -3(-1) + c \Rightarrow c = -12$ OR $2x^{2} + x - 10 = c - 3x$ $2x^{2} + 4x - 10 - c = 0$ Tangent $\Rightarrow b^{2} - 4ac = 0$ $\Rightarrow 4^{2} - 4.2.(-10 - c) = 0$ $c = -12$	[4] B1 B1 M1 A1 A1 OR M1 A1 A1 A1 A1 [5]	Stated or used. Correct differentiation Equates their derivative with their gradient of line <i>x</i> correct <i>c</i> correct. Could also obtain from substituting $\mathbf{x} = -1$ into $2x^2 + x - 10 = c - 3x$. Equates line and curve Obtains correct quadratic = 0 Uses tangency implies $b^2 - 4ac = 0$ Fully correct substitution <i>c</i> correct	Look out for using 3 instead of -3. This gives $\mathbf{x} = \frac{1}{2}$ which also leads to $y = -9$. B0B1M1A0A0 Max 2/5

Qu	iestion	Answer	Marks	Guidance	
10	(i)	$\frac{(x-4)^2 - 16 + (y+1)^2 - 1 = 0}{(x-4)^2 + (y+1)^2 = 17}$	M1	Correct method to find centre of circle	e.g. $(x \pm 4)^2$ and $(y \pm 1)^2$ seen (or implied by correct answer)
		Centre = $(4, -1)$	A1	Correct centre soi.	M can be implied by correct centre.
		$m = -\frac{1}{4}$	B1	Gradient of OA correct (could use OC or CA) [A = $(8, -2)$ is not required for this part, but may be used]	Note: Centre (- 4, 1) leads to "correct" answer. M1A0B0M1A0 Max 2/5
		$y = -\frac{1}{4}x$	M1	Attempts equation of straight line through O or A or centre of the circle with their calculated gradient.	
		x + 4y = 0	A1	www Correct equation in required form i.e. $k(x + 4y) = 0$ for integer k_x allow 0 = 4y + x etc.	Alternative for first three marks: M1 Attempt at implicit differentiation as evidenced by
					$2y \frac{dy}{dx}$ term
			[5]		A1 $2x + 2y \frac{dy}{dx} - 8 + 2 \frac{dy}{dx} = 0$ and
					substitutes O to obtain $\frac{dy}{dx} = 4$
					B1 Find correct negative reciprocal
10	(ii)	A = (8, -2) m' = 4	B1ft B1ft	Must be seen/used in (ii); ft their centre ft their gradient in (i)	
		y+2 = 4(x-8) When $y = 0, x = \frac{17}{2}$	M1	Attempts equation of perpendicular line through their A. (Not $(4, -1)$.)	If centre used here, max B1B1 , 2/6.
		When $y = 0, x = \frac{17}{2}$	M1	Attempt to find <i>x</i> value of point B from their equation of perpendicular line	Equation of line/B may not be seen explicitly.
		Area = $\frac{1}{2} \times \frac{17}{2} \times 2 = \frac{17}{2}$	M1	Attempt to find area of OAB e.g. $\frac{1}{2} \times$ their	
				OB x their 2, or $\frac{1}{2}$ x their OA x their AB, or call t into two triangles	Must have used a valid method to find B. OA = $\sqrt{68}$, AB = $\sqrt{\frac{17}{4}}$
			A1	split into two triangles Accept 8.5 or equivalent fractions but not	Y -
				unsimplified surds. www	Look out for "correct" answer from wrong coordinates – A0 .
			[6]		-

Q	Question		Answer	Marks	Guidance			
11	(i)		Gradient of given line = 6	B1	soi as gradient of the line	Can be implied by use of $-\frac{1}{6}$		
			Perpendicular gradient = $-\frac{1}{6}$	M1	Uses product of perpendicular gradients is -1 at some point; may be implied by later working.			
			$\frac{dy}{dx} = -2kx^{-3}$ $-\frac{1}{6} = -2k(-3)^{-3}$	M1 A1	Attempt to differentiate (ax^{-3} seen) Fully correct			
				M1	Equates their derivative at $x = -3$ with their perpendicular gradient	e.g. $-\frac{27}{2k} = 6$ (implies first M1)		
			$k = -\frac{9}{4}$	A1 [6]	Correct value of k. Allow $-\frac{27}{12}$ etc.			
	(ii)		When $x = -3$, $y = -\frac{9}{4(-3)^2} = -\frac{1}{4}$ $y + \frac{1}{4} = 6(x + 3)$	B1	Correct value of <i>y</i> www			
			$y + \frac{1}{4} = 6(x + 3)$	M1	Attempts equation of straight line through $(-3, y)$, any non-zero gradient. y must be from their k but allow slips for M mark.			
			24x - 4y + 71 = 0	A1ft	Correct equation in any form – gradient 6 but ft their value of $\frac{k}{9}$. Allow 6 (x – -3)	For the first A mark, allow follow through their value of k – straight		
				A1	Correct equation in required form i.e. a(24x - 4y + 71) = 0 for integer <i>a</i> , terms in any order. cao	line through (-3, their $\frac{k}{9}$) with correct gradient of 6 e.g. $k = 81$ leads to $y - 9 = 6(x + 3)$		